
International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 93
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

A Multi-Level Adaptable Components Framework
for Unified Networked Environment

P. Sivaraj

Abstract— For service providing systems, incoming service request rate at a server is a crucial parameter. Given that Internet traffic is
bursty in nature and it is not usually well shaped by the time it arrives at a server, it is possible to encounter extremely heavy traffic load at
a server particularly at a peak time. Coping with such traffic loads may imply dropping request packets at the server buffer outright,
undoubtedly an egregious solution for both the service provider and its clientele, or alternatively, a “reduced” quality service may be
proffered if service requesters are willing to accept such a compromise. Here, the system expected/target behavior is assumed to be
predicated by a high level policy, and in order to serve that specific policy well, the system is expected to adapt its behavior to the
monitored change in local network traffic intensity at the server site. If reduced quality of service is available to be dispensed to client set
without necessarily dropping them out altogether, system functionality may be maintained, if not improved.

Index Terms— Adaptive systems, self-management, autonomic computing, Unified network, Adaptable components, Network, goal
policies.

——————————  ——————————

1 INTRODUCTION
he available complex software systems can be customized
and configured. These options can be used to adapt the
behavior of the software components even at run time in

response to the change in execution environment. Proposed
system (explain!) is to design a website with multiple combi-
nations of model and view components (explain!). This system
will have design of the webpage with database representation.
The variations in network traffic at the server cite should trig-
ger website automatically to replace its components with other
components [1].

Development of this project need clear idea about particu-
lar problems, which indeed helps to develop the project with
high performance, and resolve some of the challenges in pro-
ject. One of the main challenges is to determine the impact of
adapting a component in system behavior. The other challenge
is to combine different components which are developed by
different developers of a team and to adapt the same to
achieve a specific change in the behavior of the system [2] [3].

The various approaches taken for self-management of such
adaptable component-based system are as follows. Compo-
nent specifications are used to describe various components
used in the system. An Adaptation specification is used to
describe the available components for adaptation. A Goal pol-
icy is used to describe the desired system behavior inputs and
produces a set of Adaptation Rules which are scripted in the
system that allows it to adapt a specific component to main-
tain its desired behavior during the runtime [3].

The various approaches taken for self-management of such
adaptable component-based system are as follows.

Product image specifications are used to describe the dif-
ferent components used in the system.

An Adaptation specification is used to describe the availa-
ble components for adaptations.

A Goal policy is used to describe the desired system behav-
ior inputs and produces a set of Adaptation Rules which are
scripted in the system that allows the system to adapt a specif-
ic component to maintain its desired behavior during the
runtime.

2 RELATED WORKS
Suppose a server of our interest is represented at the net-

work layer level as a system with its Markovian input queue
(all requests coming to server are independent, and identically
distributed with no remembrance of the quality of the past
services they received as individual requests from the server –
that is they have lost all the memories of their past service
quality) to receive service requests. We assume the mean arri-
val rate of service request packet to be λ per sec, and its Mar-
kovian property does lead to arrival process to be Poisson dis-
tributed (inter arrival time to be exponential). Furthermore,
we assume that the requests are served at an average rate of μ
requests per sec, and the service process is again assumed to
be Poisson distributed (in reality, any distribution will be tol-
erated here with some minor changes in performance out-
come) [4] [5].

Furthermore, we assume that the requests are going to be
served in FCFS mode. Basically, every operational queue is a
finite sized buffer or of finite capacity capable of allowing at
any time at most, say, k request packets in it waiting to be
served [6]. Therefore, our operational queuing model is an
M/M/1/k queue (See Kleinrock, Queuing System) which is
diagrammatically shown as follows:

T

————————————————
• P.Sivaraj is currently pursuing masters’ degree program in Computer

Science Engineering in Sasurie academy of engineering, Coimbatore. E-
mail: sivarajmp@gmail.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 94
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Where the blocking probability is with

traffic intensity . The probability that the system is
busy (system utilization factor)

 .
In the event of very high traffic flow, we have ρ→1, and us-

ing L´ Hospital rule, we conclude that

This is extremely high for a large buffer size k.

The average number of customer seeking and getting ser-

vice in the system, N, i.e. the system load comes out to be

And the very first term in it explodes as ρ→1. The same

thing is seen happening in the system response time equation

As the traffic intensity ρ climbs up to 1.

Obviously, the only solution(s) to this problem is to scale

down the service rate μ at the server, and/or cut down ser-
vices which are time consuming. For example, the loading
time of the following photo in full RGB spectra would be con-
siderably larger

As, it requires handling a total pixel map of volume

768×1024×3 of 2359296 bytes. One can cut down the image
loading time by requiring only a reduced dimension of, say,
480×640×3 pixel volume, shrinkage of roughly 0.39. Or, if one
prefers, one could upload, only the grayscale image instead as
shown below,

Required, uploading about 93734 bytes in this case. Here,

the shrinkage is about 96%, a considerable advantage to a
server, if it is required to pack on its requested page a lot of
such RGB pictures [7].

Also, often enough servers are required to provide central

tendency of some stored data to requesting users. The data
may be too large to download, but the server could provide its
distribution characteristics in a ‘frugal’ mode if response time
of a server is a way too high.

For example, let us suppose a given dataset ‘Cement’ is
given, wherein the amount of heat evolved (in Cal) is given by
a dependent variable y with 4 independent variables
x_1,x_2,x_3 and x_4 values assume all arranged in a table for-
mat. If the dataset is large, it may not be feasible to download
the data from the server directly; instead, it might be a better
strategy to ask for its summarization [8].

One way to summarize it would be to provide some statis-
tics showing data behavior as shown below.

For each column, we may get data characteristics defined

over 6 attributes (min, max, median, mean, first quantile and
the third quantiles). Would that be good enough? At times,
when the response time of the server is reasonably low, per-
haps one might consider this as a standard data analysis
chunk. The correlation matrix as shown above shows pair-
wise correlation between the variables. For instance, in this
case the variables x_2 and x_4 are highly correlated, and their
effects on the dependent variable y (with correlations 0.8162
and -0.8213) does suggest a linear model like y=a_0+a_2 x_2-
a_4 x_4. It would be real nice to get that model while one is
with it in its first attempt, but it might prove to be too costly
[8] [9]. If the server is really busy, perhaps, just the summary
statistics would be good enough; one could get the rest incre-
mentally.

The issue is: how to reduce the service time of a server that
affects its response time without scaring its users away. It is a
difficult problem that has to be tackled. If nothing is done to
the response time of a popular server, it would lose its appeal.
If, on the other hand, its array of service is constantly offered
at a lower rate, again it might lose its clients. If a client contin-
uously receives poor quality service from a server, perhaps the
server has to be redesigned.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 95
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

3 BRIEF ANALYSIS OF ADAPTATION SYSTEM
This framework allows the system to identify the behavior

and performance of the application in the internet, if any net-
work traffic or problems in loading components may then it
automatically identify the application performance and re-
place the corresponding system components in it to provide
same effectiveness of the application to users.

3.1 Adaptation Policy
Designing and creating adaptation policies for compo-

nents in system is one of the critical tasks in the autonomic
system it is difficult to define a policies which can configure
automatically based on the any given situation. To avoid these
situation we can use control theory and rule based expert sys-
tems it provides possible solutions to our techniques, however
both of them has some disadvantages. We can use hybrid ap-
proach which provides modeling and optimization offline to
generate suitable configuration, at the same time it helps to
encode policies in our application which are used by the ap-
plication at runtime. This technique and approach is examined
in the given issue of dynamic management in virtualized con-
solidated server environments that host multiple multi-tier
applications [9].

Here we can use novel hybrid approach which helps us to
improve autonomic behavior of the system in the both server
and client side. To predict system behavior and to generate
optimal system configuration automatically, we can use this
queuing theoretical models in this system. However, instead
of manufacturing these configurations on demand, they're
made offline to feed a decision-tree learner that produces a
compact rule set or adaptation policy that may be employed in
rule engines directly, audited, combined with alternative hu-
man-produced rules, or just accustomed aid domain special-
ists in writing and maintaining management policies. This
approach of manufacturing entire call rule sets offline has an-
other profit in addition, the modeling answer and improve-
ment is entirely far from the vital path of the system through-
out runtime. Therefore, it's attainable to model and optimize
ever larger and a lot of advanced systems.

Although the approach is general, we have a tendency to
focus here on the matter of expeditiously allocating resources
in consolidated server environments. Server consolidation
through virtualization technologies is more and more seen as
some way to cheaply meet the large demands of area, hard-
ware, and energy that square measure generated by fashiona-
ble multi-tier enterprise systems.

By hosting applications on virtual machines, resources are
often shared between applications at an awfully fine grain
(e.g., CPU cycles). This raises vital challenges, together with
handling the immensely completely different responsiveness
and performance needs of the multiple applications and man-
aging dynamic modifications in resources demands because
the application workloads change. Basically, the management
question is a way to provision all the applications to maximize
the utility provided whereas taking into consideration service
level agreements (SLAs), resource availableness, and work-

loads.
Our overall approach is made public within the below

Figure. The rule set generation method is driven by the rule
set creator. It generates a collection of candidate works and
invokes the configuration optimizer to see the most effective
configuration Copt for every candidate workload W. It then
passes these workloads and associated configurations through
the decision-tree learner from the wood hen toolkit to get the
rule sets [10].

For every work W passed thereto, the optimizer searches
through the complete configuration area for the utility increas-
ing configuration. To cypher utility, it invokes the model
thinker that for every candidate configuration c and work W,
provides AN estimate of the system interval and therefore the
C.P.U. utilization of every system part. The C.P.U. utilization
data helps the optimizer verify if the configuration is viable on
the on the market resources or not. The model thinker uses
bedded queuing models to predict mean response times and
utilization. The response Times Square measure accustomed
cypher overall utility. The queuing models parameters square
measure computed victimization an automatic method in AN
offline coaching part. This section describes every part well,
beginning with the queuing models.

3.2 Application Modeling
Regular queuing networks are used in the multi-tier web

application; here we choose layered queuing models as the
basis of our work in this system. The reason is that in consoli-
dated server environments with fine-grained electronic
equipment management and multiple applications, models
got to be correct over a large vary of workloads, high utiliza-
tions, and even in configurations that may be terribly unbal-
anced in terms of resource allocation amongst tiers. Thus,
block development that aren't vital in well-provisioned envi-
ronments, e.g., a bottleneck attributable to the block of front-
end computer code threads by an extremely overladen back-
end server, should be expressly sculptured. In contrast to cus-
tomary queuing models, superimposed queuing networks
alter such modeling by permitting multiple resources to be
consumed by asking at a similar time [9].

Net: Represents the latency introduced by the network.
Since we assume that the network uses a pure delay server
and not a bottleneck (i.e., no resource sharing). The service
time is measured using ICMP ping measurements in the na-
tive environment of the system.

Disk: Represents the delay due to disk I/O. To measure
the service time transparently, we wrapped each component
with an interception library using the LD_PRELOAD envi-
ronment variable. The library intercepted each read and write
call made by the application to compute the mean number of
I/O calls a disk and their service time.

Component: (Apache, Tomcat, and MySQL). Represents
the processing performed by the software component. The
task is modeled using an M/M/n queue, where n is set to the
number of maximum software threads each component is con-
figured for (or1in the case of MySQL, which creates threads on
demand). The threads execute on a CPU queue with the pro-
cessor sharing discipline (to approximate time slice OS sched-
uling).

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 96
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Using the Servlet.jar we can measure the service time and
number of calls for these servers transparently, we instru-
mented the Servlet.jar file that is used by every application
based on Java servlets using binary rewriting programs in the
system. Using the instrumentation timestamps we can easily
identify the each incoming request from clients and response
to the web server, at the same time each request to and re-
sponse from the database server. Additionally we can
measures end to end response time for the entire request and
response from the client and server. We can perform this ex-
periment with only one user at a time, before that we need
ensures that no queuing delay is present in the current system,
and the measurements at each server can be correlated with
others. As same as their values in the native environment
along with the disk I/O service times are sufficient to compute
the service times for each component [10].

VMM: By using VMM in Xen environment we can find
the interaction delay induced by it. Due to it dependent on
Xen and no other application, the service time for the task
have to be assumed equal across all machines. By computing
the difference between the service time of each component
with the VMM task and without the VMM task we can esti-
mate the time. VMM service time is computed by using
knowledge of the measurement points and how many times
the VMM was included in each measurement.

Client: By using client the workload for the queuing mod-
el is generated. During run time the instantaneous rates of
individual transaction can be measured, the set of |Ti| inde-
pendent open Poisson processes is the workload for each ap-
plication [ai], one for each transaction type. This allows the
model to any mix of transaction types in the workload.

3.3 Rule-Set Construction
In our approach the highest-level component is the rule

set constructor. A set of candidate workload WS is randomly
generated by this component by using each application which
has the highest allowed request rate. For each workload W 2
WS, it will find the best configuration copy (W) by invoking
the optimizer. Each host contains a list of nodes where each
configuration is encoded as a linear list of physical host. The
node that listed inside the host contains the name of the appli-
cation followed by the name of the name which it belongs and
the CPU capacity allocated to it.

The points in the rule-set construction will form a partial
“raw rule set” for each of the candidate workload. Workloads
which are not evaluated as a part of candidate set can be ap-
plied in a rule which is also included inside the complete rule
set, hence some form of interpolation is needed. By using the
J48 decision tree learner we can generate a final rule set with
help of the Weka machine learning toolkit. The form w to a
threshold or w to a threshold at each of its branches is the
condition under the generated decision tree, where “w to a” is
the request rate for transaction t of application a. The path that
leads from the root of the tree to that leaf is the conditions that
will be satisfied when the lead of the tree encodes the configu-
ration [11].

Using decision tree we can construct multiple functions in
the system which helps us to make the decision easily in
adaptable components. The rule set is needed for the interpo-

lation so decision tree will provide this first with any work-
load in the range allowed by the SLA where it is not applicable
to the points evaluated by the optimizer. Then for Second, a
nested “if-then-else” rule set is obtained from linearizing the
decision tree due to it require less expertise to understand
than the models that generated in it. Third, all the configura-
tions that included in the systems are known before develop-
ment due to there is finite number of leaves in the decision
tree. For business-critical systems we gathered the knowledge
of degree of predictability and verifiability from this. Finally,
by learning algorithms aggregate portions which share similar
configurations and prune outliers we get the raw rule set table
which provided by the tree.

Due to the fact that during run-time and consequence of
compaction, the larger sets of points in the systems are used to
generate the tree, some loss of accuracy is expected. The severe
of loss is evaluated in the next session with a modest number
of training points and accurate rule sets are constructed.

3.4 Automating process
Self-configuration: The system will automatically set its

configuration according to the needs specified by the user to
achieve the high-level goals.

Self-optimization: The system will optimize itself when it
meet high level requirement where it simple be seen as dy-
namic self-configuration.

Self-healing: If any error occurs the autonomic system de-
tects those errors and repairs by itself. This make the system to
tolerate any kind of errors occurs in it.

Self-protection: The systems have to be well protected
against malicious attacks and from the errors make by the us-
ers, without making any change inside the configuration.

3.5 Dynamic Resource Allocation
In Dynamic resource allocation will triggered in workload
management for DBMS to do workload reprioritization. Im-
mediate resource reallocation to the workload will be get by
dynamically adjusting the workload according to the priority.

In DBMS performance management the main key factors
such as buffer pool memory pages and CPU shares are the two
shared system resource which considered in this study. Multi-
ple workloads can be run concurrently by the DBMS, where
the workloads are classified in different business importance
classes with unique performance objectives. According to the
business importance level in the workload it will get a certain
amount of the shared resources. More resources are assigned
to the workloads which have high importance and low re-
sources are assigned to the workloads which has low im-
portance while low importance [11].

Based on an economic model the resources are allocated.
To sell the shared system resource the DBMS conducts “auc-
tions”, and the resources are bought by the workloads submit
“bids” and biding based trade mechanism. Business im-
portance level in the workload is reflected by the Virtual
“wealth” is assigned to all the workloads. More wealth is as-
signed to the workload which have high importance than low
importance ones.

Based on the three components of resource model, re-
source allocation method and performance model, the dynam-
ic resource allocation approach defined in the system. The first

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 97
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

component resource model is helps to allocate the resources
and helps to identify the available total amount of the resource
to allocate in the system. We using separate buffer pool to as-
sign the every single competing workload at the same time
buffer pool memory pages are directly allocated to the work-
load [9].

Resources that are used in the CPU cannot directly as-
signed to a workload because resources are used bulk in the
system so we need to partition CPU resources by monitoring
the number of database agents that are available to serve re-
quest from the database server. In this project, we going to use
a DB2 DBMS which help us to handle one client request from
the database and configuring one database agent to maintain
all connection in the server. By examining, the relationship
between the databases that are available in the internet and
database agents along with CPU utilization of a workload. We
can easily identify the more database agents available to de-
fine the serve request for a particular workload and the CPU
resource workload bandwidth we can easily measure the sys-
tem performance. The available total amounts of resources are
parameters in there source allocation approach, so it can adapt
to different system configurations.

There are many numbers of methods and techniques are
available for resource allocation which helps us to determine
how to identify an optimal resource pair in a buffer pool
memory pages and CPU shares for a workload in the system
to increase the benefits of the workload performance. Howev-
er workload needs to collect resources in appropriate amount
which cannot define the bottleneck resource of the system.
This technique provides greed algorithm which helps to iden-
tify resource preferences of a workload in the resource alloca-
tion process of the particular system [10].

This resource allocation process is continuously repeated
in the system until we get appropriate results. First we need to
know about the iteration of the algorithm, we can use its vir-
tual wealth, a workload bids for a unit of the resource (either
buffer pool memory or CPU) that it predicts will yield the
greatest benefit to its performance. The starting node, n1,1,
represents the minimum resource allocation to a workload,
namely one unit of buffer pool memory and one unit of CPU,
at the beginning of a resource allocation process. The work-
load then traverses the directed weighted graph to search for
the optimal <cpu, mem> pair in order to achieve its perfor-
mance objective.

3.6 Adaptation selection example
• Response time: low, medium, or high
• Quality: graphical or textual

• Budget: under or over

Note that these three stakeholder objectives suggest three
corresponding attributes that are important to select an adap-
tation.

• Response time: 1 if low, 0.5 if medium, 0 if high
• Quality: 1 if graphical, 0.5 if unchanged, 0 if textual
• Budget: 1 if under or unchanged, 0 if over
• Disruption: 1 if 1, 0.75 if 2, 0.5 if 3, 0.25 if 4, 0 if 5

3.7 Modeling adaptation logic
In this technique, the behavior of the adaptable compo-

nents of a system results from the dynamic reconfiguration of
the service composition associated to the channels used by the
core layer of the system. We need to design and develop a
rules for the high level adaptation policies to support in the
runtime adaptation of the application with the help of these
service compositions at a high level of abstraction. These poli-
cies helps to the system to locate when and how the service
composition is integrated with each channels that are recon-
figured in term of logical view of channels, and services, and
service compositions. The choice of those policies was driven
by the variation necessities of previous systems designed vic-
timization the protocol composition framework.

The specification of associate degree adaptation policy us-
es components represented in different models:
The service model, that gives a logical description of the ser-
vices that offered and might be utilized in service composi-
tions.
 The channel model, that gives a logical description of the
channels whose service compositions are often adapted.
The context model, that describes the context data needed to
outline the things during which adaptation is required.

To boot, modeling the difference logic of associate degree
application conjointly involves the definition of associate de-
gree application model and a detector model, as explained
within the next sections.

4 ALGORITHMS
Most recommendation algorithms start by finding a set of

customers whose purchased and rated items overlap the us-
er’s purchased and rated items. The algorithm aggregates
items from these similar customers, eliminates items the user
has already purchased or rated, and recommends the remain-
ing items to the user.
Two popular versions of these algorithms are

• Collaborative filtering
• Cluster models.
Other algorithms — including search-based methods and

our own item-to-item collaborative filtering — focus on find-
ing similar items, not similar customers. For each of the user’s
purchased and rated items, the algorithm attempts to find sim-
ilar items. It then aggregates the similar items and recom-
mends them.

4.1 Traditional Collaborative Filtering

A customer is represented as an N-dimensional vector of
items by using traditional collaborative filtering algorithm,
where N is the number of distinct catalog items. Vectors have
the components which are positive for positively rated items
and negative for negatively rated items.

By using the inverse frequency the algorithm typically
multiplies the vector component to compensate for best-
selling items, it is more relevant when making less well-
known items. For almost all customers, this vector is extreme-
ly sparse.

4.2 Cluster Models

By dividing the cluster model in to many segments we can
find the customers who are similar to the user and treat the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 98
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

task as a classification problem. Assigning the user to the seg-
ment containing the most similar customers is the main goal of
this algorithm. Recommendations are generated with the help
of using the purchases and ratings of the customers in the
segment.

By using a clustering or other unsupervised learning
algorithm the segments are created and manually determined
segments are used by some applications. Clusters or segments
are form by grouping the similar customers together with the
help of the clustering algorithm groups. Optimal clustering is
impractical over large data sets so various forms of greedy
cluster generation are used by most applications. Initial set of
segments in this algorithms contain one randomly selected
customer each. By the existing segments they match the cus-
tomers to itby using some provision for creating new or merg-
ing existing segments.

Sampling or dimensionality reduction is necessary for
very large data sets which has high dimensionality. The algo-
rithm generates the segments; the segment with the strongest
similarity is choosing to computes the user’s similarity to vec-
tors that classifies the user accordingly to it. Some algorithms
classify users into multiple segments and describe the strength
of each relationship. Rather than comparing the entire cus-
tomer base with the user to a controlled number of segments
the clusters models will get better online scalability and per-
formance than collaborative filtering. Computation of the
complex and expensive clustering is run offline even when
recommendation quality is low. Numerous customers are
group together into a segment by Cluster models, it will match
a user to a segment, and for making recommendations it will
consider all similar customers in the segment. Because the
similar customers found by the cluster are not the most similar
customers, the recommendations they produce are less rele-
vant. By using numerous fines grained segments it is possible
to improve quality, but finding similar customers using col-
laborative filtering is expensive as then online user–segment
classification.

4.3 Search-Based Methods

Search-based methods are used to search for related items
that have the recommendations problem. The algorithm helps
to find the items in the given user’s purchased and rated items
by constructs a search query by the same author, artist, or di-
rector, or with similar keywords or subjects.

Search based recommendation algorithms perform and
scale well if the user has few purchases or ratings. It is impos-
sible to frame query if a user purchased thousands of items.
Subsets of data and reducing quality have to be used in the
algorithm. Recommendation quality is relatively poor in all
cases. New, relevant, and interesting items are discovered and
find by a customer with help of recommendations. There is a
chance of fail to achieve the goal by the items if it has the same
author or in the same subject category.

5 IMPLEMENTATION
Spring MVC framework is used to design the system and it

helps to secure and watch the flow of the system clearly. At
the same time the functionalities of the system is developed in

the java programming language. Java is high level program-
ming language developed by sun microsystem. It is an object
oriented system provides more user friendly function.

In mvc-dispatcher-servlet.xml all the initialization of spring
is done in the system to create an application. Need to create
corresponding tables for the application. If the table creation is
done then we need to establish connection between MySQL to
application, for calculating the number view pages and the
rules for displaying the components has been scripted in the
mvc-dispatcher-servlet.xml. Securing the user personal infor-
mation and unwanted situation in the application user login is
create it provide more security for application and user, this
page is configured using the security-config.xml. In web.xml
all the servlet details and their locations are defined. Java
Server Pages are used for designing the web pages because it
provides more functionalities and attractive design to the ap-
plication. Using the mvc-dispacher-servlet.xml to view object
and to implement the Model View Controller framework in
spring concept.

Jetty server is used for initializing the project, at the same
time connection between the system and the MySQL is also
configured. To run my application first we need to start the
jetty server, once the jetty server is started then the welcome
page will be moved to a local host and the same will be loaded
in the web browser. Controller is used to check all pages by
providing the corresponding functionalities and execute the
model, all the web pages are in the view part of MVC, it will
automatically return to the view and print the relevant output
whether the application process is complete successfully or fail
upon the reason of something.

jMeter is the application developed by the apache founda-
tions. jMeter is used for the purpose to check the web page
modifications if the number of users accessing the website
increase. jMeter will get the input of web page addresses and
its input details and it will run and will display the graph re-
sult and the table list for our confirmation

Suppose the accessing of website crosses the CPU memory
of above thirty percentages the resolution of the image will
automatically change to the lower size image. After running
the jMeter, if we refresh the web page, we can view the chang-
es in the adaptable component which will be displayed in the
webpage.

6 SIMULATION AND OTHER RESULTS
6.1 System Design

This section give brief instruction about my application
design, here I choose a better technique that help to my
application select adaptable product image while the changes
may occur on the system in web page retrieval time. My
application make changes in the web page based on the
number of requests (i.e. execution state) and a high level
policy will be drawn which decides the behavior of the
system. KPI parameter (Key Performance Indicator) and also
based on the information provided for each component are
used to create impact on the KPI’s and if there is any
limitation or specific requirements [1] [3] are needed in the
system then these things will create automatically.

Consider an example, many users are requesting to view a

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 99
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

particular product image then there may high traffic occur, so
the image will be not visible to some of the requested users
based on their network plan and coverage of the network. By
replacing the high quality product image to a low quality
image may yield significant memory, processor, while if it has
less number of traffic then the same adaptations may have
negligible impact on the system.

6.2 System Overview
Every time in my system automatically check the CPU

usage whenever user request to visit the particular product
image if the CPU usage is high then the system automatically
redirect to which triggers an event and the adaption rule will
be selected and applied .Once system CPU usage is higher
than normal it is overloaded then the best suitable component
will be selected and will presented to the user. If it is in normal
state there will not be any change in the behavior of the
system [4] , [5].

7 CONCLUSION
The proposed methodology, which is used to manage all the

behaviors; which are to be adapted in a complex software system.
As specified earlier, this technique highly relies on the data pro-
vided by the developers who have created the components
through the Key Performance Indicator values. The rules are then
created which is used to evaluate the adaptive behavior of the
system in offline and online phases. The results which are exam-
ined during the implementation suggest that the approach evalu-
ates how far the current state is deviated to an optimal state and
also how large the impact is on each and every component load
which is used to estimate an adaption impact.

In future we can create an application that support for two
different videos about the product quality and with the audio
support. This functionality provides more advantages to my sys-
tem. Additionally we can provide user interface to change in the
normal and high traffic, using more attractive user interface takes
more time to load in the server in the high traffic. So we can cre-
ate two different user interfaces to adopt based on the CPU usage
and the situation.

ACKNOWLEDGMENT

I would like to extend my sincere thanks to all people men-

tioned below who have helped me in carrying out this re-
search. I record my deep sense of indebtedness and whole
hearted gratitude to head of the department, Mrs. N.
Poongothai M.E., Assistant Professor and Head, Department
of Computer Science and Engineering, Sasurie Academy of
Engineering, Coimbatore, for her active involvement, encour-
agement, caretaking and valuable suggestions in all the way
and also shaping the research work and this report. I am high-
ly indebted to Ms. R. Meenatchi M.Tech, Assistant Professor,
Department of Computer Science and Engineering for her
support, guidance and constant supervision during this work.

I thank all my classmates for their kind cooperation and en-
couragement.

REFERENCES
[1] G. Jung, K. Joshi, M. Hiltunen, R. Schlichting, and C. Pu, “Generating Adapta-

tion Policies for Multi-Tier Applications in Consolidated Server Environ-
ments,” Proc. Int’l Conf. Autonomic Computing, pp. 23-32, 2008.

[2] S.-W. Cheng, D. Garlan, and B. Schmerl, “Architecture-Based Self-Adaptation
in the Presence of Multiple Objectives,” Proc. Int’l Workshop Self-Adaptation
and Self-Managing Systems, pp. 2-8, 2006.

[3] L. Rosa, A. Lopes, and L. Rodrigues, “Modeling Adaptive Services for Dis-
tributed Systems,” Proc. 23rd ACM Symp. Applied Computing, pp. 2174-
2180, 2008.

[4] M. Couceiro, P. Romano, and L. Rodrigues, “A Machine Learning Approach
to Performance Prediction of Total Order Broadcast Protocols,” Proc. Fourth
IEEE Int’l Conf. Self-Adaptive and Self- Organizing Systems, pp. 184-193,
2010.

[5] M. Couceiro, P. Romano, and L. Rodrigues, “Polycert: Polymorphic Self-
Optimizing Replication for In-Memory Transactional Grids,” Proc. 12th
ACM/IFIP/USENIX Middleware Conf., vol. 7049, pp. 309-328, 2011.

[6] R. Grieco, D. Malandrino, F. Mazzoni, and D. Riboni, “Context-aware provi-
sion of advanced internet services,” in PerCom Workshops, 2006, pp. 600–603.

[7] T. Abdelzaher and N. Bhatti, “Web content adaptation to improve server
overload behavior,” in WWW8 / Computer Networks, 1999, pp. 1563–1577.

[8] F. Mazzoni, “Efficient provisioning and adaptation of webbased services,”
PhD Thesis, Universita di Modena e Reggio Emilia, 2006.

[9] G. Iaccarino, D. Malandrino, and V. Scarano, “Personalizable edge services for
web accessibility,” in Proceedings of the 2006 International Cross-disciplinary
Workshop on Web Accessibility. ACM, 2006, pp. 23–32.

[10] S. Souders, “High-performance web sites,” Commun. ACM, vol. 51, no. 12,
pp. 36–41, 2008.

[11] Bandara, E. Lupu, J. Moffett, and A. Russo, “A goal-based approach to policy
refinement,” IEEE International Workshop on Policies for Distributed Sys-
tems and Networks, vol. 0, p. 229, 2004.

 IJSER

http://www.ijser.org/

	1 Introduction
	2 Related Works
	3 Brief Analysis of Adaptation System
	3.1 Adaptation Policy
	3.2 Application Modeling
	3.3 Rule-Set Construction
	3.4 Automating process
	3.5 Dynamic Resource Allocation
	3.6 Adaptation selection example
	3.7 Modeling adaptation logic

	4 Algorithms
	4.1 Traditional Collaborative Filtering
	4.2 Cluster Models
	4.3 Search-Based Methods

	5 Implementation
	6 Simulation and Other Results
	6.1 System Design
	6.2 System Overview

	7 Conclusion
	References

